Existence and non-existence of constant scalar curvature and extremal Sasaki metrics
نویسندگان
چکیده
We discuss the existence and non-existence of constant scalar curvature, as well extremal, Sasaki metrics. prove that natural Sasaki–Boothby–Wang manifold over admissible projective bundles local products non-negative CSC Kähler metrics, described in [3], always has a curvature (CSC) metric its Sasaki-Reeb cone. Moreover, we give examples show extremal Sasaki–Reeb cone, defined set vector fields admitting compatible metric, is not necessarily connected it can be empty even non-Gorenstein case. also by example non-empty cone need contain which answers question posed [16]. The paper contains an appendix where explore metrics weighted [43], on manifolds
منابع مشابه
On the existence of Kähler metrics of constant scalar curvature
For certain compact complex Fano manifolds M with reductive Lie algebras of holomorphic vector fields, we determine the analytic subvariety of the second cohomology group of M consisting of Kähler classes whose Bando-Calabi-Futaki character vanishes. Then a Kähler class contains a Kähler metric of constant scalar curvature if and only if the Kähler class is contained in the analytic subvariety....
متن کاملExistence of conformal metrics with constant Q-curvature
Given a compact four dimensional manifold, we prove existence of conformal metrics with constant Q-curvature under generic assumptions. The problem amounts to solving a fourth-order nonlinear elliptic equation with variational structure. Since the corresponding Euler functional is in general unbounded from above and from below, we employ topological methods and min-max schemes, jointly with the...
متن کاملF eb 2 00 5 AN OBSTRUCTION TO THE EXISTENCE OF CONSTANT SCALAR CURVATURE KÄHLER METRICS
We prove that polarised manifolds that admit a constant scalar curvature Kähler (cscK) metric satisfy a condition we call slope semistability. That is, we define the slope µ for a projective manifold and for each of its subschemes, and show that if X is cscK then µ(Z) ≤ µ(X) for all subschemes Z. This gives many examples of manifolds with Kähler classes which do not admit cscK metrics, such as ...
متن کاملSimply Connected Manifolds with Infinitely Many Toric Contact Structures and Constant Scalar Curvature Sasaki Metrics
We study a class of simply connected manifolds in all odd dimensions greater than 3 that exhibit an infinite number of toric contact structures of Reeb type that are inequivalent as contact structures. We compute the cohomology ring of our manifolds by using the join construction for Sasaki manifolds and show that all such contact structures admit a ray of compatible Sasaki metrics of constant ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2023
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-023-03323-5